Plant Nutrition & Crop Quality

By John Guerard Grimmway Farms

GRIMMWAY FARMS

Grimmway Farms was started by Rod & Bob Grimm in Orange County in 1968

They moved their operation to Bakersfield in the early 1970's growing and packing carrots.

Today Grimmway Farms grows not only carrots but many other vegetables as well.

Grimmway packs & ships both conventional & organic produce exclusively out of Calif. and sells directly to all the major grocery stores and markets in the US and Canada.

VERTICALLY INTERGRATED

GRIMMWAY FARMS

CONVENTIONAL FARMING

CAL-ORGANIC

ORGANIC FARMING
GREENHOUSE OPERATION

KING PAK

POTATO FARMING

PREMIER

CITRUS PACKING

Currently, Grimmway farms around 30,000 acres of carrots and 28,000 acres of organic vegetables.

Two-thirds of the conv. carrots are grown with outside growers.

Owned conv. land is rotated with potatoes, tomatoes, garlic, green beans, and wheat.

We grow over 50 different organic vegetables year round, all on our own fields

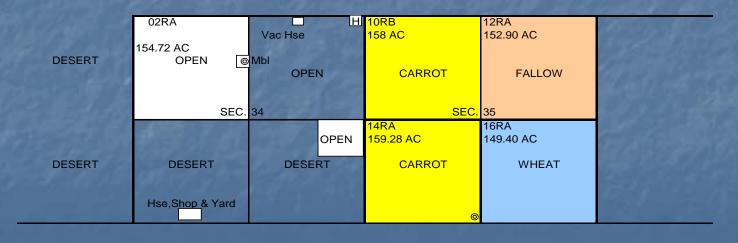
Growing areas:

There are two seasons in Bakersfield (S/S, F/W).

Coachella & Imperial valley's (winter).

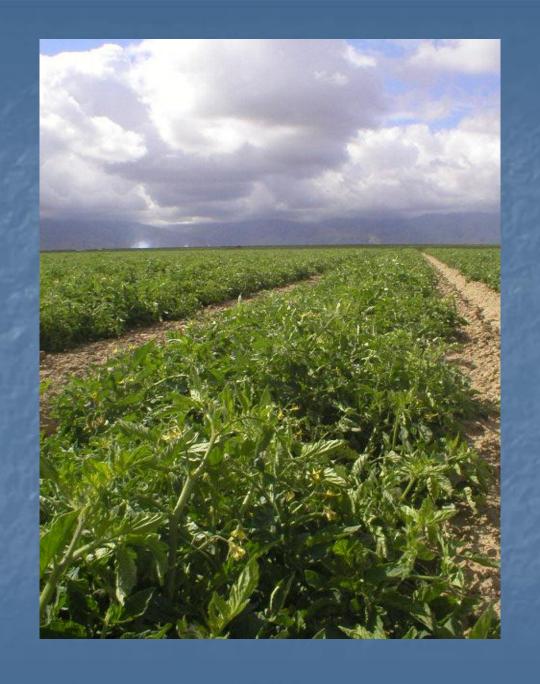
Cuyama, Lancaster, Cumming's Valley, Central Coast, Upper San Joaquin Valley, and Colorado (summer)

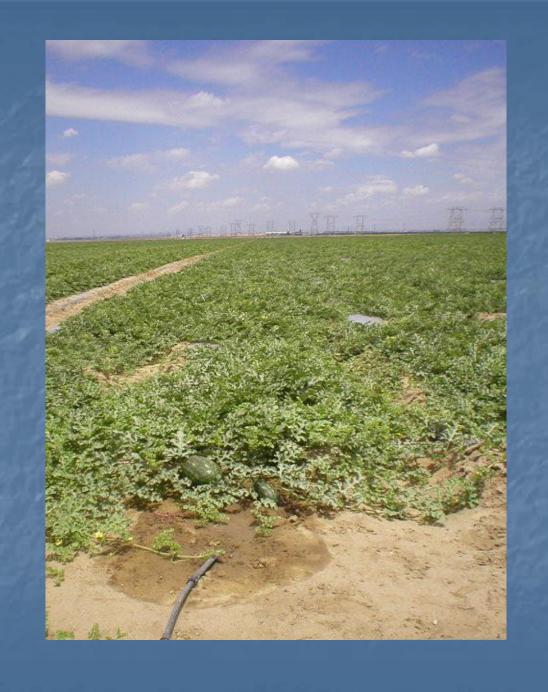
SEASONAL ROTATION



ROTATIONAL STRATEGY

- ALLOWS FIELDS TO FALLOW
- DECREASES DISEASE & NEMATODE PRESSURE ON ANY ONE CROP
- DEMINSHES THE LIKELYHOOD OF DEPLETING SOIL NUTRIENTS BY MONOCROPPING
- HELPS IMPROVE THE SOIL BY INCORPORATING CROP RESIDUE BACK INTO THE SOIL THUS INCREASING THE SOIL MICROBIAL ACTIVITY FOR FUTURE PLANTINGS





How do we manage the fertility in our crops for yield & quality?

Our Fertility Approaches

Sufficiency vs. Build-Maintenance

We follow a build-maintenance approach in our fields that we own or control with long term leases.

We want to remove limiting factors in our fields and build our soils for the next rotational crop. • We soil sample every field before we plant to determine what fertility is needed for the next crop we're growing.

A separate fertilizer recommendation is made for each field.

FERTILITY

- FIELDS SAMPLED
- SAMPLES ANALYSED
- RECOMMENDATIONS
- SUPPLIERS
- APPLICATORS N-P-K
- MICRO NUTRIENT APPLICATIONS

FRUIT GROWERS LABORATORY, INC.

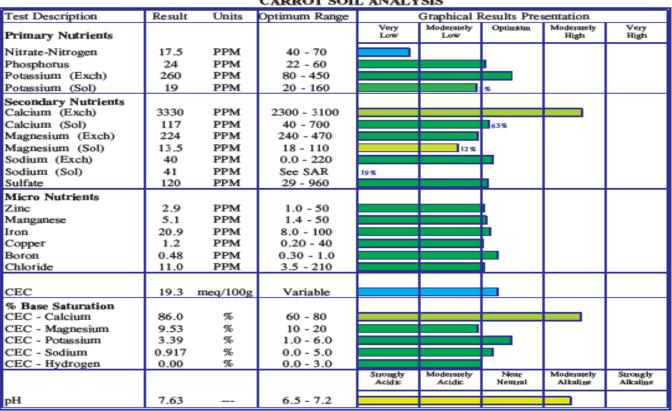
November 4, 2011 Grimmway Enterprises Attn: Farming Division

P.O. Box 179 Arvin, CA 93203

Description : McKittrick Rn 12-1W+12-2; 92.8 Project :#14528: Grimmway Enterprises

Lab ID : VI 1142698-001

Customer ID : 4-15953


Sampled On : October 26, 2011 Sampled By : ID Services

Received On : October 31, 2011 : 0-18"

Depth

Meth Irrg.

CARROT SOIL ANALYSIS

Good Problem. Indicates physical conditions and/or phenological and amendment requirements. Note: Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations.

November 4, 2011

Grimmway Enterprises

Lab ID : VI 1142698-001

Customer ID : 4-15953 Description : McKittrick Rn 12-1W+12-2; 92.8

CARROT SOIL ANALYSIS

Test Description	Result	Units	Optimum Range		Grap	phical Re	esults l	Presentati	on	
Others				Satisfac	tory	Possible Problem		Moderate Problem		reasing roblem
Soil Salinity	0.80	mmhos/cm	0.0 - 3.0							
SAR	1.0		0.0 - 6.0							
Carbonate	12	PPM	< 3.0							
Bicarbonate	305	PPM	See Gyp Req.							
Limestone	0.4	%	0 -0.1							
				0	1	2	3	4	5	6
Lime Requirement	0	Tons/AF				l	l .			
Gypsum Requirement	< 0.50	Tons/AF								
				Very Low		derately Low	Optima	m Moder Hig		Very High
Moisture	9.3	%	½ Satn. %							
				Loamy Sand	Sandy Loam	Loam	Silt Loam	Clay Loam	Clay	Organic
Saturation	39.2	%	20 - 60							

Good Problem Indicates physical conditions and/or phenological and ansendment requirements.

Note: Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations.

Chad Lessard, Director of Ag. Services

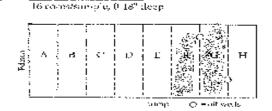
CEL:EHB

NEMATODE SAMPLING

Typical Field Sampling Pattern

100 Acre Field, 10 Samples, 16 Cores Per Sample, 0- 18 " Deep

NEMATODE RESULTS


NEMA (ODE SAMPLE ANALYSIS

Joff Bachlifs Grimmway Buterprises 6900 Mt. View Rd. Bakersfield, CA 93307 Martin Rios Bakersfield/

Lab #12363

Sampled 8y: ID Services Date Sampled: 04/29/09 Date Pracessagl: 05/01/09 Date Seported: 05/01/09

		Phort Percyario Nergatodes	'kr'i Foology		
Killdeer Ediaun 37	Extraction	Stubby	FF = 75	WI	
99KES7) 77,05 Acc.	Martind	Roc.			
E'replant Carrots	SF				
A	2	VPN	128	128	
В	7	(PN	126	125	
C:	2	orn	196	195	
D	7	(PN	128	128	
E		(PN	252	232	
7 ·		1	1.32	152	
G		A	198	45	
71	r	418	180	180	

Comments. (These are general comments only, but knike the Pest Control secondarions) Repental and Burgal Reading Neoratode counts reader afficient considered low.

When Willis approximately The Read control of the control of remember management at rategies. Please review the son $p \neq 0$ up including Beted Landmarks. Constact the faboratory will like 3 does of solely til there is the possibility that the scrong field was somehold. The conduct is received, it is muchally agreed that the proper field p(q, q, q) upded.

(2008) and Faltaction Melinals

Gold Information

olan Butterfield - APCA as 4.4 - 0.0 A 99384 (2419 Folia A.A. - Verhammit, C.A. 932894829 Februaristy (641) 972-9731 - 0 etu ar (651) 978-8259 NTN = No Plant Penaside Nematades Receive ad DF+PF - Itanto tal Action gold Feeting (Asia : tokes PP = P. ar I Proseitic Nematades WI = BF : EF/Toke PT, cocluding Pin Approximate Secretion Officiency, EF.

EE vattor depending about will his use on I maisting
Root Knot Potato AM = 52% Leaves legge
96" = 63% Leaves only

Lesion SM = 30%

SM = Steeling Mist,
Sumple volume — followed to
SE - Steeling Supple of that long
to rep 6 volume = 500 or soil
With = cysshed Recorp Sumple date,
sunderdized to 20 gm (nois)
FE = Sumed Fernale Cours non-challing
that standard bed to 1 gm more

DC Dissa Examination

We use a program developed in Excel to make recommendations based on nutrient parameters we establish for each crop we grow.

Fert. Recommendation

Grower: OG

Field: McKittrick Rn 12-1W+12-2; 92.8

Sample ID: VI 1142698-001

Date: 11/18/11

Crop: Carrots

Season:

Yld/Acre:

S/S

Grower:

38 Location:

Soil Analysis:

CEC рH NO3-N Ρ K **SO4-S** В Cu Fe Mg Mn Ca Na OM Zn 19.3 7.6 18 24 256.1 119.6 0.5 1.2 20.9 223.6 5.1 2.9 3327 40.7 Value

92.8

Rating

Base Saturation %:

Soluble Nutrient Test: CA% Mg% **K**% Na% **H% ECe** Excess L Bicarb. SP SAR 86.0 9.5 3.4 0.9 0.80 0.4 305.1 39.2 1.0 Value Value Rating Rating

Acres:

Recommendation:

	N	Р	K	S	В	Cu	Fe	Mg	Mn	Zn
lbs/acre	4	80	150	346	1	3		22	3	5

Fertilizer Mix Required:

Soil Ammendments:

	lbs/acre	
MAP (11-52-0)	34	4.76%
KCI (0-0-62)	171	24.03%
K-MAG (0-0-22-11Mg-22S)	200	28.11%
Sulfur (90% pastille)	300	42.17%
Boron 15% (Granubor)	7	0.94%

Rate:	711 lbs/acre	100.00%
Total Fertilizer:	33.01 tons	

• · · · · · · · · · · · · · · · · · · ·	
	lbs/acre

Compost

Gypsum (7	75%)
Sulfur (90% pas	stille)
Lime(Dolir	nite)
Sulfuric	Acid

For high sodium and/or low calcium 300 For high sodium and/or high pH (included in mix)

For low pH and/or low calcium For high sodium & bicarb's and/or high pH

Dry Micros	lbs/acre	Liquid Micros gals/acre
ZnSO4 36%	14	Zn EDTA 9% 1.38889
MnSO4 31%	10	Mn EDTA 5% 0.96774
FeSO4 30%		Fe EDTA 4.5%
CuSO4 25%	12	Cu EDTA 5% 1.19048
		Structure 10

Variable Rate Technology Field: Mariable Rate Technology

Location: Madera 15

Recommendation:

														Micro-	Lime/
Zone	Acres		N	Р	K	S	В	Cu	Fe	Mg	Mn	Zn	Gypsum	Sul	Dolimite
1	41.6	lbs/acre	21	101	298	2	2	3	1		3	5	2000		
2	31.4	lbs/acre	17	81	343	2	2	3			3	5	1500		
3	5.7	lbs/acre	21	101	313	2	2	3	1		3	5	600		
4	1.1	lbs/acre	17	80	196	2	2	1			3	5	600		
		lbs/acre													
		lbs/acre													
		lbs/acre													
		lbs/acre													
		lbs/acre													
		lbs/acre													

Total: 79.8

Fertilizer Required: Lbs/Acre

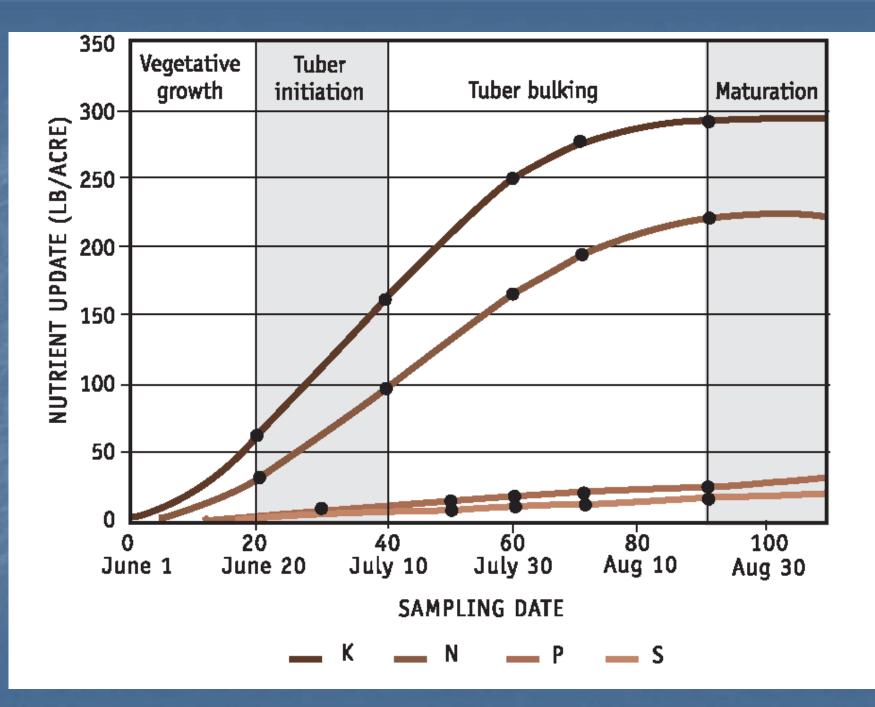
Zone	MAP	KCL	Boron	Iron	K-MAG	Mn	Zn	Copper	Lbs/A	Total Fert. T/A	Gypsum	Micro- Sul	Lime/ Dolimite
1	194	480	13	3		10	14	12	726	15.12	2000		
2	155	553	13			10	13	12	756	11.86	1500		
3	194	504	13	3		10	14	12	750	2.15	600		
4	154	316	13			10	14	4	511	0.28	600		
									Total	· 29 40			

									10tal. 23.70					
Bin #:	2	1	2		1					VRT=9:	9	9	9	
Ave lbs/a:	178	508	13	2		10	13	12						

Application

Field:

Date: 11/18/2011


Total acres: 79.8

Main Bin/Trailer #1						
Fertilizer:		KCL		K-MAG	Total lbs/a	Total tons
Ave lbs/acre:		508			508	20.3
Supp. Bin/Tailer #2						
Fertilizer:	MAP		Boron		Total lbs/a	Total tons
Ave lbs/acre:	178		13		192	7.6
Co-Op Bin						
Fertilizer:					Total lbs/a	Total tons
Ave lbs/acre:						

Amendments:		Gy	osum	Micro-Sul	Lime/	Dolimite
Zone	Acres	lbs/a	Total lbs/a	lbs/a Total lbs/a	lbs/a	Total lbs/a
1	41.63	2000	83,260			
2	31.38	1500	47,070			
3	5.72	600	3,432			
4	1.08	600	648			
Totals:	79.8	•	134,410		•	
Total tons:			67.2			

Zone ID	Fert 1	Fert 2	Fert 3	Gyp	Micro-Sul	Lime	_	Veris	1/2 Veris	Full Prgm.
1	207	480	12	2000			_			
2	168	553	12	1500						
3	207	504	12	600						
4	167	316	4	600						

What we know and don't know about fertility needs/demand curves.

What Nutrients Do Carrots Use?

For a 40 ton/acre yield:

	N	P	K
Roots	120	64	240
<u>Tops</u>	100	8	200

Total 220 72 440

Carrot Nutrient Removal:

N P K 120 64 240

Amount of nutrients (lbs/a) removed from a 40ton/acre crop.

S Ca Mg 8 24 12

Lbs/a removed for 40 ton/acre crop

We use different combinations of macro & micro nutrients based on the crops demand, season, soil, yield goal and quality parameters.

Examples:

- SOP & MOP
- KMS, KMag
- KTS, ATS, CaTS
- UAN 32, CAN 17, AMS, Urea
- MAP, 10-34-0, Ortho liquids
- Micronutrients
- Soil amendments: S, Gyp, Compost, H2SO4, CaCl, etc.

- Carrots: N, a lot of K, Ca high beta carotene, color, top health.
- Potatoes: Early N & Ca, K @ bulking internal browning, hollow heart, diseases.
- Tomatoes: Early N, Ca @ bloom, K @ fruiting blossom end rot, disease resist., solids, color.
- Garlic: Early N, K @ bulbing uniform bulb growth, root plate, disease resist.

How do we measure our success?

- Yield & pack out results
- Quality parameters- shelf life, color, size, shape, uniformity, etc.
- Tissue & soil samples
- Crop sampling in-season

A & L Laboratory

Sufficiency

2.0-4.0

40-300

30-75

5-30 59-400

0.65-4.6

3.01-6.00

0.20-0.50

3.01-5.00 1.50-2.90

0.20-0.50

26-50

51-200

30-49

0.21-0.60

101-300

Nutrient	Puregro	Albion	Plant Analysis	Plant Analysis	H.W. Otto	Soil Testing & Plant Analysis	Fruit Growers	Fruit Growers
		Laboratories	Handbook II	Handbook II	Univ. Cal	Oscar Lorenz	Laboratory	Laboratory
	Sufficient	Optimal	Sufficient	Sufficient	Normal Range	Common Nutrient Ranges	Critical Levels	Critical Levels
Nitrogen (%)	3.0-4.0	3.00-3.50	2.10-3.50	3.00-3.50	See	2.10-3.50	See	See
Phosphorus (%)	0.30-0.60	0.20-0.40	0.20-0.50	0.20-0.40	Below	0.20-0.30	Below	Below
Potassium (%)	3.00-4.50	2.50-3.00	2.50-4.30	2.90-3.50		2.50-4.30		
Calcium (%)	1.20-1.80	1.00-2.00	1.40-3.00	1.00-2.00		1.40-2.00	1.3-3.0	2.0-4.0
Magnesium (%)	0.30-0.60	0.25-0.60	0.30-3.0	0.25-0.60		0.43-0.53	0.29-0.60	0.31-0.65
Zinc (ppm)	25-100	20-70	25-250	20-250	30-150 ²	20-50	40-150	40-150
Manganese (ppm)	30-100	50-200	60-300	50-200	40-400	190-325	40-300	40-300
Boron (ppm)		30-75	30-100	30-75	30-75	29-35	30-100	30-75
Sodium (%)	0.66-4.00	< 0.50					0.65-4.6	0.65-4.6
Sulfur (%)	0.25-0.46	0.30-1.00						
Copper (ppm)		5-15	5-15 ¹	5-15	5-50	4.5-7.0	5-30	5-30
Iron (ppm)	30-100	50-200	50-350	50-300	50-500	120-335	59-400	i
Chloride (%)	0.50-1.50							
Molybdenum (ppm)			0.50-1.15	0.50-1.40				
Lithium (ppm)								
Aluminum (ppm)		<250						
Comments:	Petiole, Midgrowth	Leaf + petiole? DRIS	Midgrowth	Mature	When plants are half grown based on weight of carrots.	Midgrowth	Midgrowth	Mature (Root Thickening)

1 - Higher	values	tolerated	if fur	ngicides

NO₃-N (ppm)

PO₄-P (ppm)

Comments:

K (%)

2 - It now appears that carrots should be above 30 ppm for be

Nutrient Puregro Sufficient

Mid-

Late

Mid

Late

Early

Mid

Late

Early

Early 12000-15000 7500-11000

3500-8000

2500

2500

2000

6.0

6.0

4.5

Petiole, Midgrowth

Nu
NO
PO

st growth.	
	Nu
	NC
	PO
	17.

	Midgrowth		Mature	When plants are half grown based on weight of carrots.
l.				
	Nutrient		H.W. Otto Univ. Cal	
			Deficient	Sufficient
	NO ₃ -N (ppm)	Early		
		Mid	5000	10000
		Late		
	PO ₄ -P (ppm)	Early		
		Mid	2000	4000
		Late		
	K (%)	Early		
		Mid	4.0	6.0
		Late		
	Comments:		When plants are half grown based on	

weight of carrots.

owth	Midgrowth

	1	
owth	Mature (Root Thicker	iing)
	Nutrient	
	NO ₃ -N (ppm)	Earl
		Mi
		Lat
	PO ₄ -P (ppm)	Early
		Mi
		Lat
	K (%)	Ear
		Mi
		Lat
	Comments:	
	1	

E 4.6
Fruit Growers
Laboratory
Critical Levels
8000-12000

10000-15000

3000-5000

3000-4500

Late refers to FGL's description of root thickening

5-7

5-7

Solutions July/August 1989

Fruit Growers Laboratory

Petiole Analysis Optimum Ranges

Unit	Mid Growth	Mature (thickening)
ppm	8000 - 12000	10000 - 15000
ppm	3000 - 5000	3000 - 4500
%	5 - 7	5 - 7
%	1.3 - 3.0	2.0 - 4.0
%	0.29 - 0.60	0.31 - 0.65
ppm	40 - 150	40 - 150
ppm	40 - 300	40 - 300
ppm	59 - 400	59 - 400
ppm	5 - 30	5 - 30
ppm	30 - 100	30 - 75
%	0.65 - 4.6	0.65 - 4.6
	ppm ppm % % ppm ppm ppm ppm	ppm 8000 - 12000 ppm 3000 - 5000 % 5 - 7 % 1.3 - 3.0 % 0.29 - 0.60 ppm 40 - 150 ppm 40 - 300 ppm 59 - 400 ppm 5 - 30 ppm 30 - 100

Challenges of Organic Farming

- Limited choices of fertilizers & amendments.
- Slow release curves and decay series.
- Temperature dependant.
- Crop dependant- length of growing season, depth of rooting, type of crop such as leafy green vs. fruiting or bulbing.
- Soils dependant- soil textures, pH

DISEASES

- BACTERIAL SPECK ON ORGANIC TOMATOES SSJV WINTER 2009
- DOWNEY MILDEW ON ORGANIC SPINACH SSJV SPRING 2009

NEMATODES

FIELD DAY AT IRVINE RESEARCH STATION

NEMATODE DAMAGE ON CARROTS

RESISTANT CULTIVARS CONTINUALLY BE BRED, GROWN AND EVULATED TO MEET FUTURE AGRICULTURAL NEEDS

The Future of Vegetables?

